
APPRASE: Automatic parallelisation of Fortran to run on an FPGA

Brian Farrimond
Department of Computing,

Liverpool Hope University, UK,
farrimb@hope.ac.uk

John Collins
SimCon Ltd UK,

j.collins@simcon.uk.com
Department of Computing,
Liverpool Hope University,

collinj2@hope.ac.uk

Ashutosh Sharma
Department of Computing,

Liverpool Hope University, UK
sharmaa@hope.ac.uk

Keywords: FPGA programming, Fortran, Migration

Abstract
 It is generally recognised that getting programs to run
on a Field-Programmable Gate Array (FPGA) is not trivial.
In spite of this, the positive attributes of FPGAs mean that
there is currently much activity trying to unlock the
opportunities they provide. This paper presents the
APPRASE pipeline as a solution that simplifies the
programming task in the context of migrating Fortran code
to run on an FPGA. APPRASE is an acronym for the
Automated Pipeline for the Parallelisation of RAndom
Scalar Expressions. The APPRASE project is based at
Liverpool Hope University UK

 To overcome the difficulties of developing programs
on an FPGA, the authors propose writing just one program.
This program, referred to as the Hydra engine, is an
interpreter which executes, in a highly parallel manner, the
calculations implemented in the users original Fortran code
transformed within the APPRASE pipeline.
 The APPRASE pipeline begins with the analysis of the
user's Fortran within the Fortran software engineering
toolkit, WinFPT. WinFPT is able to transform automatically
the Fortran code so that it is amenable to the next stages in
the pipeline which generate highly parallel executable code
that is interpreted and executed by the Hydra Engine.
 A prototype is currently under development. A
simulation has already been created which runs programs
that consist of sums, products and conditional branches.
Establishing the prototype will provide a framework for
further development that can handle arrays, sub-program
and function calls.

1. INTRODUCTION
 This paper describes the APPRASE pipeline which
aims to simplify the migration of Fortran codes onto
FPGAs. The APPRASE project is hosted at Liverpool Hope
University.
 (http://www.hope.ac.uk/school-of-computing/apprase.html).

1.1. The potential of FPGAs
 High Performance reconfigurable computing [Buell et
al 1996] employing field-programmable gate arrays
(FPGAs)[Trimberger 1994] has attracted considerable
interest in the last few years.[Buell et al 2007] FPGAs are
semiconductor devices that contain many thousands of
logic blocks that can be programmed to connect together
and perform the functions of simple logic such as AND and
OR gates or more complex combinatorial logic such as
adders, multipliers and decoders. An FPGA is described as
reconfigurable since its logic blocks can be re-programmed
indefinitely. Additionally, FPGAs include blocks of
memory that are also reconfigurable. The potential of
FPGAs lies in their inherently fine grain architecture
provided by their configurable logic blocks [Wain et al.,
2006]. Their highly parallel nature can be used for faster
processing of hotspots found in complex algorithms. For
example, the Maxwell Supercomputer in Edinburgh is
essentially an IBM BladeCentre Cluster with FPGA
acceleration. [Baxter et al 2007a] An important feature is
that it has a much lower power consumption than equivalent
machines with conventional architectures.
 FPGAs have undergone rapid development in the past
few years, in particular by increasing the number of logic
blocks and size of memory. In fact, Moore’s law is more
closely followed by FPGAs than application-specific
integrated circuits (ASICs) [Underwood 2004]. According
to Mercury Computer Systems Inc., [Mercury Computer
Systems Inc. 2008] FPGAs perform better than RISC
processors in multiprocessing systems providing reduced
overall system size, weight, cost and power consumption.
Thus FPGAs are being used in various fields such as
aerospace and defence, automotive, broadcast, consumer,
data processing and storage, wired and wireless
communications. [Xilinx Inc, 2008].

1.2. The problems associated with FPGAs
However, the task of writing new software for FPGA based
machines is time consuming and expensive. [Baxter et al.,
2007b]. The experience reported at Daresbury Laboratory is
typical: "Our initial experiences of FPGA programming
have been largely frustrating. High performance

http://www.hope.ac.uk/school-of-computing/apprase.html

reconfigurable computing is still very much in its infancy,
with programming standards and portability between
platforms still some way off. This results in a situation
where a lot of time and effort can be spent writing software
in a soon to be forgotten language for a soon to be forgotten
machine" [Wain et al., 2006, p18]
 Building and executing a program to run on an FPGA is
a non-trivial task as it involves a multi-step process [Baxter
et al., 2007b].
 The hardware implementation process involves circuit
designing, converting the code to a Hardware Description
Language (HDL), synthesis, simulation, translation, placing
and routing followed by on-chip verification and debugging.
This process takes a long time and any mistakes during the
process result in costly time delays. [Wain et al., 2006]
 The programming overhead is mainly due to the steep
learning curve of HDLs and I/O low level programming
[Wain 2006]. Until recently projects had to be developed in
close coordination with hardware/electronic engineers
adding to the cost of human resources [Baxter et al 2007b].
The recent advent compilers for C like languages (such as
Dime-C and Handel-C) for FPGAs has meant that most of
the low-level programming can be abstracted for a software
engineer. However, programming constraints such as
working with double precision floating point numbers
coupled with the absence of write-once/run-anywhere
facilities, mean that it is still difficult to migrate large
scientific programs onto FPGAs. This is especially true if
the programs are in non-C languages such as Fortran as the
cost of migration is high both in terms of time and money
[Overbey et al., 2005]. The shrinking number of Fortran
programmers who can refactor programs for High
Performance Computing needs and the absence of cross
platform standards for FPGAs make it more difficult to
reach a wider audience of users (Baxter et al., 2007b).

1.3. The proposed solution
 Recognising the difficulties of developing programs on
an FPGA, the authors propose writing just one program
which has been named as the Hydra Engine. This paper
describes the logical design of the Engine and indicates the
plans for its future development.
 The paper is organised as follows. The next section
describes the overall strategy of the pipeline. Section 3
explains how Hydra instructions to be executed by the
Engine are generated from the user's original Fortran code.
Section 4 describes the format of Hydra instructions.
Section 5 describes the Hydra Engine operating as a
program that fetches and executes Hydra instructions.
Section 6 describes the execution of a typical Hydra
instructions. Section 7 discusses implementation issues
raised by the work done so far and charts future directions.

2. THE APPRASE PIPELINE STRATEGY
The APPRASE strategy is to maximise the potential for
parallelisation of FPGAs. It does this by transforming the
user's Fortran code into highly parallel Hydra instructions
which can themselves be executed in parallel. Thus, like
operations that can be executed simultaneously are
transformed into a Hydra instruction consisting of an op
code and an operand including multiple inputs and outputs.
Suppose the FPGA is configured to contain 100 adders; then
100 simultaneous additions can be executed on the 100
adders using 200 inputs and obtaining 100 outputs. The
addresses of the 200 inputs and space for 100 outputs form
the operand part of the Hydra instruction. The second level
of parallelisation is that unlike instructions can be executed
in parallel. Thus, while the 100 additions are being
executed, 100 multiplications and 100 divisions might also
be executing if 100 multipliers and 100 dividers are also
implemented on the FPGA.
 The transformation of the user's Fortran starts with the
WinFPT Fortran software engineering toolkit [WinFPT
2008] followed by the application of scheduling algorithms.
These transformation steps are described in the following
section.

3. TRANSFORMING FORTRAN INTO HYDRA

INSTRUCTIONS
 Tranformation is carried out by:
• using WinFPT to modify the Fortran to meet certain

restrictions;
• using the f2Hydra WinFPT plug-in to translate the

modified Fortran into untagged Hydra code;
• using DAREA scheduling algorithms to tag the Hydra

code;
• using Hydra2Bin to translate the Hydra code into a

binary format for execution on the Hydra Engine in the
FPGA

3.1. Modifying the Fortran code with WinFPT
 WinFPT is a suite of tools for writing, maintaining and
migrating Fortran programs. It has several hundred
commands for checking, reporting on and modifying
Fortran source code. WinFPT is used to modify the users
code to conform to the following restrictions:

Variables with only one (known) value are changed to
DATA statements
For example
 g = -9.81
is replaced by
 DATA g /-9.81/
Similarly, variables which are modified in loops are also
initialised in DATA statements. This enables the values to
be planted directly into the Hydra program.

Single assignment to variables
 All re-assignments to a variable are replaced with single
assignments to new variables. Thus for example:

REAL*4 X
:
X = 7.7
:
X = A*B

is replaced by:
REAL*4 X_L1, X_L2
:
X_L1 = 7.7
:
X_l2 = A*B

 The technique of making multiply assigned variables
unique is based on the authors' development of the concept
of symbol lives [Farrimond 2007] and it enables the
optimisation algorithm to schedule the separate assignments
independently.

Triplets only
All assignments involving expressions are reduced to
triplets or separate function calls. Thus:

A = B*C + D*E*F + G*SQRT(H)
becomes

T1 = B*C
T2 = D*E
T3 = T2*F
T4 = SQRT(H)
T5 = G*T4
T6 = T1+T3
A = T6+T5

 This enables parallelisation to be carried out at the
finest granularity. Here, T1, T2, T4 can be calculated
simultaneously. Later pipeline stages will identify and
implement this level of parallelisation.

Replacement of loops with IF .. GOTO
 All types of loop are replaced with the IF .. GOTO
construct. Thus,. for example,

DO I=1,10
 S = S+I
ENDO

becomes
 I=1

100 CONTINUE
 S=S+I
 IF (I > 10) GOTO 200
 GOTO 100

200 CONTINUE
 This simplifies the implementation of loops in the
Hydra code because all control constructs can be handled in
the same way.

Replacement of arguments
 Sub-program arguments are replaced by copying
operations to and from variables in COMMON blocks.

In-line expansion and loop unrolling
 Small sub-programs are expanded in-line and small
loops are unrolled.

3.2. Using f2Hydra to generate untagged Hydra
 A WinFPT plug-in called f2Hydra is used to generate
untagged Hydra from the modified Fortran. Here is the
modified Fortran that computes numerically the trajectory of
a projectile under gravity.

 DATA g /-9.81/
 DATA dt /1.0E-3/
 DATA v /100.0/ ! Initial condition v
 DATA h /0.0/ ! Initial condition h

100 CONTINUE
! FPT vf=v+g*dt ! Next frame value v
 t1=g*dt
 vf=v+t1

! FPT hf=h+v*dt ! Next frame value h
 t2=v*dt
 hf=h+t2

 IF (h < 0.0) GOTO 200 ! Stop when we hit
 ! the ground
 v=vf ! Update integral for v
 h=hf ! Update integral for h
 GOTO 100

200 CONTINUE
 END

 The corresponding generated untagged Hydra code is:

Initial
 g=-9.81E0
 dt=1.0E-3
 v=100.0E0
 h=0.0
End Initial

100
 r4_product * t1 = g * dt
 r4_sum * vf = v + t1
 r4_product * t2 = v * dt
 r4_sum * hf = h + t2
 r4_lt * h_lt = h < r4_zero
 branch * h_lt, 300

 r4_sum * v = vf
 r4_sum * h = hf
 goto 100
300
 halt *

 The Initial block identifies values to be planted directly
into the binary version of the Hydra code. 100 and 300 are
labels used in identifying the flow of control. The remaining
lines are Hydra instructions in the following formats

<instruction type> * <triplet>
branch * <condition>
 <destination if true>
goto <label>
halt *

 The * symbols are placeholders for tags to be added by
the DAREA scheduler in the next stage. The instruction
types used here are:

r4_product multiplication of two REAL*4 numbers
r4_sum addition of two REAL*4 numbers
r4_lt comparison of two REAL*4 numbers

 Note that r4_zero symbolises zero stored as a REAL*4
number.
 In
 branch * h_lt, 300
the program branches to label 300 if h _lt is true, otherwise
it goes to the next instruction.

 What this stage has done is identify the types of
operations to be carried out when executing the program.
The next stage identifies the sequence in which they are to
be carried out and opportunities for parallelisation.

3.3. Using the DAREA scheduler to generate tagged

Hydra
 The untagged Hydra is now processed by the DAREA
scheduler which identifies the parallelism in the Hydra code
and tags the operations with labels accordingly. Tagging
does two things:
• replaces the * symbols with labels referred to as tags.

Operations with the same tags can be executed
simultaneously;

• identifies a linked list of tags that defines the sequence
in which the operations can be carried out.

 For the projectile example, the tagged Hydra looks like
this:

Initial
 g=-9.81E0
 dt=1.0E-3
 v=100.0E0
 h=0.0
End Initial

100
 r4_product r4_prod_1 t1 = g * dt
 r4_sum r4_sum_2 vf = v + t1

 r4_product r4_prod_1 t2 = v * dt
 r4_sum r4_sum_2 hf = h + t2
 r4_lt r4_lt_3 h_lt = h < r4_zero
 branch branch_4 h, 300

 r4_sum r4_sum_5 v = vf
 r4_sum r4_sum_5 h = hf
 goto 100

300
 halt halt_6

link
 start r4_prod_1
 r4_prod_1 r4_sum_2
 r4_sum_2 r4_lt_3
 r4_lt_3 branch_4
 branch_4 r4_sum_5, halt_6
 r4_sum_5 r4_prod_1
end link

 Notice that several instructions have the same tags e.g.
r4_prod_1 is the tag for both t1=g*dt and t2=v*dt. This
means that the two multiplication instructions are executed
simultaneously.

 The link structure at the bottom shows the sequence in
which the groups of instructions identified by tag names are
to be executed. For each tag listed in the first column, the
second column gives the next tag in the execution sequence.
The branch_4 tag is a special case that gives two alternative
next in sequence tags according to whether the branch test is
true or false.

3.4. Using Hydra2Bin to generate the binary program

for execution on the FPGA
 The final stage is to use another process, Hydra2Bin to
translate the tagged Hydra into Hydra instructions into
binary format.
 While developing the pipeline, we have employed an
intermediate format that expresses the binary program in
XML and developed a simulator that is able to read both
XML and binary versions of a Hydra program and execute
it in a pseudo-parallel manner. The XML aids in debugging
the generation of the Hydra instructions.
 We explain the structure of the binary instructions in
the next section.

4. HYDRA INSTRUCTION FORMAT
 There are two types of Hydra instruction:

• calculation instructions
• control instructions

 Calculation instructions make use of the various adders,
multipliers and other devices available within the Hydra

Engine. Control instructions direct the sequence of control
such as branch and halt instructions.

4.1. Hydra calculation instructions
 A Hydra calculation instruction consists of a single op
code with multiple parallel input arguments, perhaps
moderated by multiple parameters, and space for multiple
parallel output results.

 Purpose
 header block op code
 next address
 waitflag
 addressofinputs
 addressofoutputs
 parameter block
 :

 input block
 :

 output block
 :

Table 1: Hydra calculation instruction format

The instruction is divided into four blocks:

header block
 This contains the op code, the address of next
instruction to be executed, a waitflag, and the addresses of
input and output blocks.

parameter block
 This contains values to be used to affect the operations
on the input values e.g. the scale ratios in fixed format
arithmetic

input block
 This contains, for example, the addresses of pairs of
values to be added or multiplied together according to the
op code type

output block
 This contains space for the results of the operations
carried out on the inputs.

4.2. Customising the binary code generation
 The numbers of parameters, input values and output
values for a particular kind of calculation are determined
when the Hydra Engine is built. The numbers will be
determined by how many devices of each calculation
instruction type are placed on the FPGA by the Engine
build. The DAREA scheduler will need to know these
numbers (which can be called collectively the Hydra Engine
configuration) in order to add tags appropriately. Suppose,
for example, that the Hydra Engine is given 100 adders. If
DAREA spots that 120 additions can be executed
simultaneously then it will create two Hydra add
instructions to be executed in sequence: the first instruction
will carry out 100 additions then the second instruction will
carry out the remaining 20 additions.

5. THE HYDRA ENGINE
 The Hydra Engine that will execute the Hydra
instructions on the FPGA can be regarded as a fetch-execute
engine.
 Generally, only unlike instruction types can be executed
in parallel. e.g. an adder instruction can execute on the adder
array while a multiplier instruction simultaneously executes
on the multiplier array. However, two adder instructions
cannot use the adder array simultaneously.
 In order to hold multiple fetched instructions, the Hydra
Engine has multiple sets of Instruction Registers, Input
address registers and Output address registers. The Hydra
Engine is able to fetch an instruction op code and the
instruction's waitflag value. If the waitflag value is 0, this
means that the next instruction in sequence can be executed
at the same time as the current instruction so the next
instruction is fetched as well from the address provided in
the next address part of the header block. Multiple sets of
instruction registers and associated registers are made
available to enable multiple fetches to be stored.
 When a waitflag value of 1 is identified, fetching stops
and the fetched instructions are executed in parallel. Once
this is done, the next instruction is fetched.

5.1. Configuring the Hydra Engine FPGA program
 As described in the previous section, the Hydra Engine
will be configured to have particular numbers of adders,
multipliers etc. It will also be configured to be able to fetch
a particular number of instructions ready for parallel
execution. We now discuss the two configurations.

5.2. Configuring the fetch
 In order to be able to store numerous fetched
instructions, a number of sets of registers are required. Each
set consists of:
• an instruction register
• an input address register
• an output address register

• a memory address register

 The fetch algorithm utilises a pointer to the current set
of registers. After fetching an instruction, the pointer is
incremented.
 The number of sets of registers is fixed when the Hydra
Engine is built. It is expected that there would be a trade off
between increasing the number of sets to enable more
instructions to execute in parallel and increasing the
complexity of the circuitry. Experiments are required to find
the optimum number of sets.

5.3. Configuring the execute
 It is envisioned that the Hydra Engine will provide
arrays of adders, multipliers, dividers, sine, cosine,
exponential calculation devices etc. The number of parallel
devices is fixed when the Hydra Engine is built.

5.4. Conceptual model of Hydra Engine
 Figure 1 shows the logical structure of the Hydra
Engine.
 M is the memory in which the Hydra binary code is
loaded.

 PC is the program counter. It is initialised to point to
the first instruction in the Hydra program.
 On each fetch, it receives the address of the next
address part of the fetched instruction. It may be overwritten
by the execution of a branch instruction.
 MARI is the memory address register used for fetching
instructions.
 WAITFLAG is used to determine whether the next
instruction can be fetched immediately before the current
instruction has been executed.
 EXECUTECOUNT and IRCOUNT are used to control
multiple fetches.
 INPUTADDRESS(1:MAX), IR(1:MAX),
MAR(1:MAX) and OUTPUTADDRESS (1:MAX)are the
sets of registers to contain the headers of the fetched
instructions.
 The devices at the bottom named R4_SUM_DEVICE
etc are the arrays of parallel calculation and control devices.
 The address decoder represents the functionality to
enable the registers to perform multiple accesses
simultaneously.

M

PC

MAR(1:MAX)

IR(1:MAX)

INPUT_ADDRESS(1:MAX)

OUTPUT_ADDRESS(1:MAX)

R4_SUM_DEVICE

R4_PRODUCT_DEVICE

R4_BRANCH_LT_DEVICE

Address
Decoder

WAITFLAG

R4_TRANSFER_DEVICE

DO
NE

DO
NE

DO
NE

DO
NE

ALL_DONE

AND gate

MARI

EXECUTECOUNT

IRCOUNT

Figure 1: Hydra Engine logical design

6. EXECUTING A HYDRA INSTRUCTION
 We shall now outline the execution of a typical Hydra
calculation instruction R4_SUM. This instruction executes
simultaneous floating point additions on multiple pairs of
real numbers. Suppose their are 20 adders in the Hydra
Engine.
 The Engine will do the following:
• Send the value inside the INPUTADDRESS register for

this instruction to the address decoder. The address
decoder will connect the set of 40 memory locations
starting at the address that was contained in the
INPUTADDRESS register to the 20 pairs of inputs to
the 20 adders.

• Send the value inside the OUTPUTADDRESS register
for this instruction to the address decoder. The address
decoder will connect the 20 outputs from the adders to
the set of 20 memory locations beginning at the address
that was contained in the OUTPUTADDRESS register.

• Trigger the addition in the 20 adders simultaneously.
The results will appear in the output destinations
simultaneously.

 It will usually be the case that there are less than 20
valid additions to be performed in the instruction. This does
not matter. Carrying out all 20 additions will not be slower
than trying to identify which ones are valid and only
executing those. Executing all 20 additions simplifies the
complexity of the wiring in the Hydra Engine.
 Executing products, divisions etc will be the same.
Executing operations such as trig functions will be very
similar - using one input per calculation rather than two.

7. CONCLUSIONS AND FUTURE WORK
 Migrating Fortran programs of anything above a trivial
size to run on an FPGA is very difficult and time
consuming. This paper has described an approach to
automation of the task that should make it much simpler and
enable users to incorporate more of the inherent power of an
FPGA in the execution of their programs. The difficulties in
current means of programming FPGAs have led
programmers to implement only key routines on the FPGA
and leave the main program running on the host computer.
This reduces the FPGA impact since the communications
between FPGA code and the host code is invariably
comparatively slow. The APPRASE approach makes it
feasible to host the entire user's program on one or more
FPGAs, this removing the communications bottleneck. The
automated nature of the migration means that the process
may take only a matter of minutes instead of the lengthy
periods currently required. automation also removes many
of the errors that are bound to be present in existing
processes that are invariably heavily reliant on manual
intervention.

 Having established the logical design, developing it into
a real working prototype is a major challenge. Nallatech
[Nallatech 2008] is supporting our efforts in producing
prototype implementations on its hardware platforms. the
authors are confident that implementation of a prototype on
a real FPGA can be achieved in the near future.

8. REFERENCES
Baxter, R. et al., 2007a. "Maxwell–a 64 FPGA
Supercomputer". Proceedings of the Second NASA/ESA
Conference on Adaptive Hardware and Systems. AHS-2007

Baxter, R. et al., 2007b. "High Performance Reconfigurable
Computing – the view from Edinburgh." Proceedings of the
Second NASA/ESA Conference on Adaptive Hardware and
Systems. AHS-2007

Buell D., El-Ghazawi T., Gaj K., Kindratenko V., 2007,
"Guest Editors' Introduction: High-Performance
Reconfigurable Computing," Computer, vol. 40, no. 3, pp.
23-27, (March)

Buell D.A., Arnold J.M. and Kleinfelder W.J., 1996, eds,
Splash 2: FPGAs in a Custom Computing Machine, IEEE
CS Press.

Farrimond, B. and Collins J. Dimensional Inference Using
Symbol Lives, 2007 International Conference on Software
Engineering Theory and Practice (SETP07), Orlando,
Florida

Mercury Computer Systems Inc. , 2008. "Innovation for
Next-Generation Warfare." Available at:
http://www.mc.com/uploadedFiles/Innovation-for-Next-
Generation-Warfare.pdf .

Nallatech 2008 home web page: http://www.nallatech.com/

Overbey J., Xanthos S., Johnson R., Foote B., 2005.
"Refactorings for Fortran and high-performance computing"
Proceedings Of The Second International Workshop On
Software Engineering For High Performance Computing
System Applications p. 37-39, ACM

Trimberger S.M., 1994, ed, "Field-Programmable Gate
Array Technology". Springer

Underwood K.D. 2004 "FPGAs vs. CPUs: trends in peak
floating-point performance". Proceedings of the
ACM/SIGDA 12th International Symposium on Field
Programmable Gate Arrays, FPGA 2004: 171-180

Wain R. et al., 2006, "An overview of FPGAs and FPGA
programming; Initial experiences at Daresbury", Tech. rep.,

http://www.nallatech.com/

Computational Science and Engineering Department,
CCLRC Daresbury Laboratory, November 2006.

WinFPT 2008 home web page: http://www.simcon.uk.com

Xilinx Inc, 2008. "FPGA and CPLD Solutions from Xilinx,
Inc". Available at: http://www.xilinx.com/

Biographies

Brian Farrimond is Principal Lecturer in Computing at
Liverpool Hope University, UK. Brian has an MA in
Physics from Oxford University, MSc in Computer Science
from University of Manchester UK. He is Honorary
Research Associate at the University of Cape Town. Besides
working at Liverpool Hope since 1992, he has worked as a
consultant on a number of software engineering projects in
the aerospace industry usually involving Fortran code
migration. He has made major contributions to the
development of the SimCon WinFPT toolkit
(http://www.simcon.uk.com). In addition, Brian has
developed the ChurchBuilder 3D Modelling tool for school
children (http://www.kiddycad.com) and time map
simulations of historical events
(http://farrimond.no-ip.org/tmrg)

John Collins is technical director of SimCon Ltd.
(http://www.simcon.uk.com), Associate Lecturer at
Liverpool Hope University UK and an Honorary Research
Associate at the University of Cape Town, attached to the
Centre for High Performance Computing. He holds an MA
in Physics and an MSc in Mathematical Psychology from
Oxford University. He has worked in compiler design and
software tool development since 1982, first as Software
Development Manager at ADI Inc. in Ann Arbor Michigan
(http://www.adi.com/), and later as Technical Director of
SimCon. He is the principal author of the underlying engine
which analyses and re-engineers Fortran code in WinFPT.

Ashutosh Sharma is Project Development Officer for the
APPRASE project. He has worked on FPGAs for the
APPRASE project and set up a High Performance
Computing facility at Liverpool Hope University. He has an
MSc degree in Distributed Systems from University of
Liverpool U.K. and Bachelor of Information Technology
degree (University of Delhi, India). Prior to working at
Liverpool Hope University, he has worked for Sony
Computer Entertainment Systems and Government of
India’s - Center for Development of Telematics. His
research interests in addition to FPGAs and High
Performance Computing include GSM mobile systems.

http://www.simcon.uk.com/
http://www.xilinx.com/
http://www.simcon.uk.com/
http://www.kiddycad.com/
http://farrimond.no-ip.org/tmrg
http://www.simcon.uk.com/
http://www.adi.com/

