
APPRASE: Automatic parallelisation of Fortran to run on an FPGA 
 
 

Brian Farrimond 
Department of Computing, 

Liverpool Hope University, UK, 
farrimb@hope.ac.uk 

John Collins 
SimCon Ltd UK, 

j.collins@simcon.uk.com 
Department of Computing, 
Liverpool Hope University, 

collinj2@hope.ac.uk 

Ashutosh Sharma 
Department of Computing, 

Liverpool Hope University, UK 
sharmaa@hope.ac.uk

 
 

Keywords: FPGA programming, Fortran, Migration 
 
Abstract 
 It is generally recognised that getting programs to run 
on a Field-Programmable Gate Array (FPGA) is not trivial. 
In spite of this, the positive attributes of FPGAs mean that 
there is currently much activity trying to unlock the 
opportunities they provide. This paper presents the 
APPRASE pipeline as a solution that simplifies the 
programming task in the context of migrating Fortran code 
to run on an FPGA. APPRASE is an acronym for the 
Automated Pipeline for the Parallelisation of RAndom 
Scalar Expressions. The APPRASE project is based at 
Liverpool Hope University UK 
 
 To overcome the difficulties of  developing programs 
on an FPGA, the authors propose writing just one program. 
This program, referred to as the Hydra engine, is an 
interpreter which executes, in a highly parallel manner, the 
calculations implemented in the users original Fortran code 
transformed within the APPRASE pipeline. 
 The APPRASE pipeline begins with the analysis of the 
user's Fortran within the Fortran software engineering 
toolkit, WinFPT. WinFPT is able to transform automatically 
the Fortran code so that it is amenable to the next stages in 
the pipeline which generate highly parallel executable code 
that is interpreted and executed by the Hydra Engine. 
 A prototype is currently under development. A 
simulation has already been created which runs programs 
that consist of sums, products and conditional branches. 
Establishing the prototype will provide a framework for 
further development that can handle arrays, sub-program 
and function calls.  
 
1. INTRODUCTION 
 This paper describes the APPRASE pipeline which 
aims to simplify the migration of Fortran codes onto 
FPGAs. The APPRASE project is hosted at Liverpool Hope 
University. 
 (http://www.hope.ac.uk/school-of-computing/apprase.html). 
 

1.1. The potential of FPGAs 
 High Performance reconfigurable computing [Buell et 
al 1996] employing field-programmable gate arrays 
(FPGAs)[Trimberger 1994] has attracted considerable 
interest in the last few years.[Buell et al 2007]   FPGAs are 
semiconductor devices that  contain many thousands of 
logic blocks that can be programmed to connect together 
and perform the functions of simple logic such as AND and 
OR gates or more complex combinatorial logic such as 
adders, multipliers and decoders. An FPGA is described as 
reconfigurable since its logic blocks can be re-programmed 
indefinitely. Additionally, FPGAs include blocks of 
memory that are also reconfigurable. The potential of 
FPGAs lies in their inherently fine grain architecture 
provided by their configurable logic blocks [Wain et al., 
2006]. Their highly parallel nature can be used for faster 
processing of hotspots found in complex algorithms. For 
example, the Maxwell Supercomputer  in Edinburgh is 
essentially an IBM BladeCentre Cluster with FPGA 
acceleration. [Baxter et al 2007a] An important feature is 
that it has a much lower power consumption than equivalent 
machines with conventional architectures. 
 FPGAs have undergone rapid development in the past 
few years, in particular by  increasing the number of logic 
blocks and size of memory. In fact, Moore’s law is more 
closely followed by FPGAs than application-specific 
integrated circuits (ASICs) [Underwood 2004]. According 
to Mercury Computer Systems Inc., [Mercury Computer 
Systems Inc. 2008] FPGAs perform better than RISC 
processors in multiprocessing systems providing reduced 
overall system size, weight, cost and power consumption. 
Thus FPGAs are being used in various fields such as 
aerospace and defence, automotive, broadcast, consumer, 
data processing and storage, wired and wireless 
communications. [Xilinx Inc, 2008]. 
 
1.2. The problems associated with FPGAs  
However, the task of writing new software for FPGA based 
machines is time consuming and expensive. [Baxter et al., 
2007b]. The experience reported at Daresbury Laboratory is 
typical: "Our initial experiences of FPGA programming 
have been largely frustrating. High performance 
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reconfigurable computing is still very much in its infancy, 
with programming standards and portability between 
platforms still some way off. This results in a situation 
where a lot of time and effort can be spent writing software 
in a soon to be forgotten language for a soon to be forgotten 
machine" [Wain et al., 2006, p18] 
 Building and executing a program to run on an FPGA is 
a non-trivial task as it involves a multi-step process [Baxter 
et al., 2007b]. 
 The hardware implementation process involves circuit 
designing, converting the code to a Hardware Description 
Language (HDL), synthesis, simulation, translation, placing 
and routing followed by on-chip verification and debugging. 
This process takes a long time and any mistakes during the 
process result in costly time delays. [Wain et al., 2006] 
 The programming overhead is mainly due to the steep 
learning curve of HDLs and I/O low level programming 
[Wain 2006]. Until recently projects had to be developed in 
close coordination with hardware/electronic engineers 
adding to the cost of human resources [Baxter et al 2007b]. 
The recent advent compilers for C like languages (such as 
Dime-C and Handel-C) for FPGAs has meant that most of 
the low-level programming can be abstracted for a software 
engineer. However, programming constraints such as 
working with double precision floating point numbers 
coupled with the absence of write-once/run-anywhere 
facilities, mean that it is still difficult to migrate large 
scientific programs onto FPGAs. This is especially true if 
the programs are in non-C languages such as Fortran as the 
cost of migration is high both in terms of time and money 
[Overbey et al., 2005]. The shrinking number of Fortran 
programmers who can refactor programs for High 
Performance Computing needs and the absence of cross 
platform standards for FPGAs make it more difficult to 
reach a wider audience of users (Baxter et al., 2007b).  
 
1.3. The proposed solution 
 Recognising the difficulties of  developing programs on 
an FPGA, the authors propose writing just one program 
which has been named as the Hydra Engine. This paper 
describes the logical design of the Engine and indicates the 
plans for its future development. 
 The paper is organised as follows. The next section 
describes the overall strategy of the pipeline. Section 3 
explains how Hydra instructions to be executed by the 
Engine are generated from the user's original Fortran code. 
Section 4 describes the format of Hydra instructions. 
Section 5 describes the Hydra Engine operating as a 
program that fetches and executes Hydra instructions.  
Section 6 describes the execution of a typical Hydra 
instructions. Section 7 discusses implementation issues 
raised by the work done so far and charts future directions.  
 

2. THE APPRASE PIPELINE STRATEGY  
The APPRASE strategy is to maximise the potential for 
parallelisation of FPGAs. It does this by transforming the 
user's Fortran code into highly parallel Hydra instructions 
which can themselves be executed in parallel. Thus, like 
operations that can be executed simultaneously are 
transformed into a Hydra instruction consisting of an op 
code and an operand including multiple inputs and outputs. 
Suppose the FPGA is configured to contain 100 adders; then 
100 simultaneous additions can be executed on the 100 
adders using 200 inputs and obtaining 100 outputs. The 
addresses of the 200 inputs and space for 100 outputs form 
the operand part of the Hydra instruction. The second level 
of parallelisation is that unlike instructions can be executed 
in parallel. Thus, while the 100 additions are being 
executed, 100 multiplications and 100 divisions might also 
be executing if 100 multipliers and 100 dividers are also 
implemented on the FPGA.  
 The transformation of the user's Fortran starts with the 
WinFPT Fortran software engineering toolkit [WinFPT 
2008] followed by the application of scheduling algorithms. 
These transformation steps are described in the following 
section. 
 
3. TRANSFORMING  FORTRAN INTO HYDRA 

INSTRUCTIONS 
 Tranformation is carried out by: 
• using WinFPT to modify the Fortran to meet certain 

restrictions; 
• using the f2Hydra WinFPT plug-in to translate the 

modified Fortran into untagged Hydra code; 
• using DAREA scheduling algorithms to tag the Hydra 

code; 
• using Hydra2Bin to translate the Hydra code into a 

binary format for execution on the Hydra Engine in the 
FPGA 

 
3.1. Modifying the Fortran code with WinFPT 
 WinFPT is a suite of tools for writing, maintaining and 
migrating Fortran programs. It has several hundred 
commands for checking, reporting on and modifying  
Fortran source code. WinFPT is used to modify the users 
code to conform to the following restrictions: 
 
Variables with only one (known) value are changed to 
DATA statements 
For example 
 g = -9.81 
is replaced by 
 DATA g /-9.81/ 
Similarly, variables which are modified in loops are also 
initialised in DATA statements. This enables the values to 
be planted directly into the Hydra program. 
 



Single assignment to variables 
 All re-assignments to a variable are replaced with single 
assignments to new variables. Thus for example: 

REAL*4 X 
: 
X = 7.7 
: 
X = A*B 

is replaced by: 
REAL*4 X_L1, X_L2 
: 
X_L1 = 7.7 
: 
X_l2 = A*B  

 
 The technique of making multiply assigned variables 
unique is based on the authors' development of the concept 
of symbol lives [Farrimond 2007] and it enables the 
optimisation algorithm to schedule the separate assignments 
independently.  
 
Triplets only 
All assignments involving expressions are reduced to 
triplets or separate function calls. Thus: 

A = B*C + D*E*F + G*SQRT(H) 
becomes 

T1 = B*C 
T2 = D*E 
T3 = T2*F 
T4 = SQRT(H) 
T5 = G*T4 
T6 = T1+T3 
A = T6+T5 

 This enables parallelisation to be carried out at the 
finest granularity. Here, T1, T2, T4 can be calculated 
simultaneously. Later pipeline stages will identify and 
implement this level of parallelisation. 
 
Replacement of loops with IF .. GOTO 
 All types of loop are replaced with the IF .. GOTO 
construct. Thus,. for example, 

DO I=1,10  
   S = S+I 
ENDO 

becomes 
 I=1 

100 CONTINUE 
 S=S+I 
 IF (I > 10) GOTO 200 
 GOTO 100 

200 CONTINUE 
  This simplifies the implementation of loops in the 
Hydra code because all control constructs can be handled in 
the same way. 
 

Replacement of arguments 
 Sub-program arguments are replaced by copying 
operations to and from variables in COMMON blocks. 
 
In-line expansion and loop unrolling 
 Small sub-programs are expanded in-line and small 
loops are unrolled. 
 
3.2. Using f2Hydra to generate untagged Hydra 
 A WinFPT plug-in called f2Hydra is used to generate 
untagged Hydra  from the modified Fortran. Here is the 
modified Fortran that computes numerically the trajectory of 
a projectile under gravity. 
 
 DATA g /-9.81/ 
 DATA dt /1.0E-3/ 
 DATA v /100.0/    ! Initial condition v 
 DATA h /0.0/    ! Initial condition h 
 
100 CONTINUE 
! FPT vf=v+g*dt    ! Next frame value v 
 t1=g*dt 
 vf=v+t1 
 
! FPT hf=h+v*dt    ! Next frame value h 
 t2=v*dt 
 hf=h+t2 
 
 IF (h < 0.0) GOTO 200 ! Stop when we hit 
     ! the ground 
 v=vf  ! Update integral for v 
 h=hf     ! Update integral for h 
 GOTO 100 
 
200 CONTINUE 
 END 
 
 The corresponding generated untagged Hydra code is: 
 
Initial 
 g=-9.81E0 
 dt=1.0E-3 
 v=100.0E0 
 h=0.0 
End Initial 
 
100 
 r4_product   * t1  = g * dt 
 r4_sum    * vf  = v + t1 
 r4_product   * t2  = v * dt 
 r4_sum       * hf  = h + t2 
 r4_lt    * h_lt = h < r4_zero 
 branch    * h_lt, 300 
 
 r4_sum    * v  = vf 
 r4_sum    * h  = hf 
 goto   100 
300 
 halt    * 



 The Initial block identifies values to be planted directly 
into the binary version of the Hydra code. 100 and 300 are 
labels used in identifying the flow of control. The remaining 
lines are Hydra instructions in the following formats 
 
<instruction type> *  <triplet> 
branch   * <condition> 
     <destination if true> 
goto     <label> 
halt    * 
 
 The * symbols are placeholders for tags to be added by 
the DAREA scheduler in the next stage. The instruction 
types used here are: 
 
r4_product multiplication of two REAL*4 numbers 
r4_sum  addition of two REAL*4 numbers 
r4_lt  comparison of two REAL*4 numbers 
 
 Note that r4_zero symbolises zero stored as a REAL*4 
number. 
 In 
 branch    * h_lt, 300 
the program branches to label 300 if h _lt is true, otherwise 
it goes to the next instruction. 
 
 What this stage has done is identify the types of 
operations to be carried out when executing the program. 
The next stage identifies the sequence in which they are to 
be carried out and opportunities for parallelisation. 
 
3.3. Using the DAREA scheduler to generate tagged 

Hydra 
 The untagged Hydra is now processed by the DAREA 
scheduler which identifies the parallelism in the Hydra code 
and tags the operations with labels accordingly. Tagging  
does two things: 
• replaces the * symbols with labels referred to as tags. 

Operations with the same tags can be executed 
simultaneously; 

• identifies a linked list of tags that defines the sequence 
in which the operations can be carried out. 

   
 For the projectile example, the tagged Hydra looks like 
this: 
 
Initial 
 g=-9.81E0 
 dt=1.0E-3 
 v=100.0E0 
 h=0.0 
End Initial 
 
100 
 r4_product r4_prod_1 t1 = g * dt 
 r4_sum  r4_sum_2 vf = v + t1 

 r4_product r4_prod_1 t2 = v * dt 
 r4_sum  r4_sum_2 hf = h + t2 
 r4_lt  r4_lt_3 h_lt = h < r4_zero 
 branch  branch_4 h, 300 
 
 r4_sum  r4_sum_5 v = vf 
 r4_sum  r4_sum_5 h = hf 
 goto   100 
 
300 
 halt  halt_6 
 
 
link 
 start  r4_prod_1 
 r4_prod_1  r4_sum_2 
 r4_sum_2  r4_lt_3 
 r4_lt_3  branch_4 
 branch_4  r4_sum_5, halt_6 
 r4_sum_5  r4_prod_1 
end link 
 
 Notice that several instructions have the same tags e.g. 
r4_prod_1 is the tag for both  t1=g*dt and t2=v*dt. This 
means that the two multiplication instructions are executed 
simultaneously. 
 
 The link structure at the bottom shows the sequence in 
which the groups of instructions identified by tag names are 
to be executed. For each tag listed in the first column, the 
second column gives the next tag in the execution sequence. 
The branch_4 tag is a special case that gives two alternative 
next in sequence tags according to whether the branch test is 
true or false. 
 
3.4. Using Hydra2Bin to generate the binary program 

for execution on the FPGA 
 The final stage is to use another process, Hydra2Bin to 
translate the tagged Hydra into Hydra instructions into 
binary format. 
 While developing the pipeline, we have employed an 
intermediate format that expresses the binary program in 
XML and developed a simulator that is able to read both 
XML and binary versions of  a Hydra program and execute 
it in a pseudo-parallel manner. The XML aids in debugging 
the generation of the Hydra instructions. 
 We explain the structure of the binary instructions in 
the next section. 
 
 
4. HYDRA INSTRUCTION FORMAT 
 There are two types of Hydra instruction: 

• calculation instructions 
• control instructions 

 Calculation instructions make use of the various adders, 
multipliers and other  devices available within the Hydra 



Engine. Control instructions direct the sequence of control 
such as branch and halt instructions. 
 
4.1. Hydra calculation instructions  
 A Hydra calculation instruction consists of a single op 
code with multiple parallel input arguments, perhaps 
moderated by multiple parameters, and space for multiple 
parallel output results. 
 

  Purpose 
 header block op code 
  next address 
  waitflag 
  addressofinputs 
  addressofoutputs 
 parameter block  
  : 
   
 input block  
  : 
   
   
 output block  
  : 
   

Table 1: Hydra calculation instruction format 
  
The instruction is divided into four blocks: 
 
header block 
 This contains the op code, the address of next 
instruction to be executed, a waitflag, and the addresses of 
input and output blocks. 
 
parameter block 
 This contains values to be used to affect the operations 
on the input values e.g. the scale ratios in fixed format 
arithmetic 
 
input block  
 This contains, for example, the addresses of pairs of 
values to be added or multiplied together according to the 
op code type 
 
output block 
 This contains space for the results of the operations 
carried out on the inputs. 
 

4.2.  Customising the binary code generation 
 The numbers of parameters, input values and output 
values for a particular kind of calculation are determined 
when the Hydra Engine is built. The numbers will be 
determined by how many devices of each  calculation 
instruction type are placed on the FPGA by the Engine 
build. The DAREA scheduler will need to know these 
numbers (which can be called collectively the Hydra Engine 
configuration)  in order to add tags appropriately. Suppose, 
for example, that   the Hydra Engine is given 100 adders. If 
DAREA spots that 120 additions can be executed 
simultaneously then it will create two Hydra add 
instructions to be executed in sequence: the first instruction 
will carry out 100 additions then the second instruction will 
carry out the remaining 20 additions.  

 
5. THE HYDRA ENGINE 
 The Hydra Engine that will execute the Hydra 
instructions on the FPGA can be regarded as a fetch-execute 
engine. 
 Generally, only unlike instruction types can be executed 
in parallel. e.g. an adder instruction can execute on the adder 
array while a multiplier instruction simultaneously executes 
on the multiplier array. However, two adder instructions 
cannot use the adder array simultaneously. 
 In order to hold multiple fetched instructions, the Hydra 
Engine has multiple sets of Instruction Registers, Input 
address registers and Output address registers. The Hydra 
Engine is able to fetch an instruction op code and the 
instruction's waitflag value. If the waitflag value is 0, this 
means that the next instruction in sequence can be executed 
at the same time as the current instruction so the next 
instruction is fetched as well from the address provided in 
the next address part of the header block. Multiple sets of 
instruction registers and associated registers are made 
available to enable multiple fetches to be stored. 
 When a waitflag value of 1 is identified, fetching stops 
and the fetched instructions are executed in parallel. Once 
this is done, the next instruction is fetched. 
 
5.1. Configuring the Hydra Engine FPGA program 
 As described in the previous section, the Hydra Engine 
will be configured to have particular numbers of adders, 
multipliers etc. It will also be configured to be able to fetch 
a particular number of instructions ready for parallel 
execution.  We now discuss the two configurations. 
 
5.2. Configuring the fetch 
 In order to be able to store numerous fetched 
instructions, a number of sets of registers are required. Each 
set consists of: 
• an instruction register 
• an input address register 
• an output address register 



• a memory address register 
 
 The fetch algorithm utilises a pointer to the current set 
of registers. After fetching an instruction, the pointer is 
incremented. 
 The number of sets of registers is fixed when the Hydra 
Engine is built. It is expected that there would be a trade off 
between increasing the number of sets to enable more 
instructions to execute in parallel and increasing the 
complexity of the circuitry. Experiments are required to find 
the optimum number of sets. 
 
5.3. Configuring the execute 
 It is envisioned that the Hydra Engine will provide 
arrays of adders, multipliers, dividers, sine, cosine, 
exponential calculation devices etc. The number of parallel 
devices is fixed when the Hydra Engine is built. 
 
5.4. Conceptual model of Hydra Engine 
 Figure 1  shows the logical structure of the Hydra 
Engine. 
 M is the memory in which the Hydra binary code is 
loaded.  

 PC is the program counter. It is initialised to point to 
the first instruction in the Hydra program.  
 On each fetch, it receives the address of the next 
address part of the fetched instruction. It may be overwritten 
by the execution of a branch instruction. 
 MARI is the memory address register used for fetching 
instructions. 
 WAITFLAG is used to determine whether the next 
instruction can be fetched immediately before the current 
instruction has been executed. 
 EXECUTECOUNT and IRCOUNT are used to control 
multiple fetches. 
 INPUTADDRESS(1:MAX), IR(1:MAX), 
MAR(1:MAX) and OUTPUTADDRESS (1:MAX)are the 
sets of registers to contain the headers of the fetched 
instructions. 
 The devices at the bottom named R4_SUM_DEVICE 
etc are the arrays of parallel calculation and control devices.  
 The address decoder represents the functionality to 
enable the registers to perform multiple accesses 
simultaneously. 

 

 
 
 
 

M 

PC 

MAR(1:MAX) 

IR(1:MAX) 

INPUT_ADDRESS(1:MAX) 

OUTPUT_ADDRESS(1:MAX) 

R4_SUM_DEVICE 

R4_PRODUCT_DEVICE 

R4_BRANCH_LT_DEVICE 

 
Address 
Decoder 

WAITFLAG 

R4_TRANSFER_DEVICE 

DO
NE

DO
NE

DO
NE

DO
NE

ALL_DONE 

AND gate 

MARI 

EXECUTECOUNT 

IRCOUNT 

Figure 1: Hydra Engine logical design 



6. EXECUTING A HYDRA INSTRUCTION 
 We shall now outline the execution of a typical Hydra 
calculation instruction R4_SUM. This instruction executes 
simultaneous floating point additions on multiple pairs of  
real numbers. Suppose their are 20 adders in the Hydra 
Engine. 
 The Engine will do the following: 
• Send the value inside the INPUTADDRESS register for 

this instruction to the address decoder. The address 
decoder will connect the set of 40 memory locations 
starting at the address that was contained in the 
INPUTADDRESS register to the 20 pairs of inputs to 
the 20 adders. 

• Send the value inside the OUTPUTADDRESS register 
for this instruction to the address decoder. The address 
decoder will connect the 20 outputs from the adders to 
the set of 20 memory locations beginning at the address 
that was contained in the OUTPUTADDRESS register. 

• Trigger the addition in the 20 adders simultaneously. 
The results will appear in the output destinations 
simultaneously. 

 
 It will usually be the case that there are less than 20 
valid additions to be performed in the instruction. This does 
not matter. Carrying out all 20 additions will not be slower 
than trying to identify which ones are valid and only 
executing those. Executing all 20 additions simplifies the 
complexity of the wiring in the Hydra Engine. 
 Executing products, divisions etc will be the same. 
Executing operations such as trig functions will be very 
similar - using one input per calculation rather than two. 
 
 
7. CONCLUSIONS AND FUTURE WORK 
 Migrating Fortran programs of anything above a trivial 
size to run on an FPGA is very difficult and time 
consuming. This paper has described an approach to 
automation of the task that should make it much simpler and 
enable users to incorporate more of the inherent power of an 
FPGA in the execution of their programs. The difficulties in 
current means of programming FPGAs  have led 
programmers to implement only key routines on the FPGA 
and leave the main program running on the host computer. 
This reduces the FPGA impact since the communications 
between FPGA code and the host code is invariably 
comparatively slow. The APPRASE approach makes it 
feasible to host the entire user's program on one or more 
FPGAs, this removing the communications bottleneck. The 
automated nature of the migration means that the process 
may take only a matter of minutes instead of the lengthy 
periods currently required. automation also removes many 
of the errors that are bound to be present in existing  
processes that are invariably heavily reliant on manual 
intervention. 

 Having established the logical design, developing it into 
a real working prototype is a major challenge. Nallatech 
[Nallatech 2008] is supporting our efforts in producing 
prototype implementations on its hardware platforms. the 
authors are confident that implementation of a prototype on 
a real FPGA can be achieved in the near future. 
 
8. REFERENCES 
Baxter, R. et al., 2007a. "Maxwell–a 64 FPGA 
Supercomputer". Proceedings of the Second NASA/ESA 
Conference on Adaptive Hardware and Systems. AHS-2007 
 
Baxter, R. et al., 2007b. "High Performance Reconfigurable 
Computing – the view from Edinburgh." Proceedings of the 
Second NASA/ESA Conference on Adaptive Hardware and 
Systems. AHS-2007 
 
Buell D., El-Ghazawi T., Gaj K., Kindratenko V., 2007, 
"Guest Editors' Introduction: High-Performance 
Reconfigurable Computing," Computer, vol. 40,  no. 3,  pp. 
23-27,  (March) 
 
Buell D.A., Arnold J.M. and Kleinfelder W.J., 1996,  eds, 
Splash 2: FPGAs in a Custom Computing Machine, IEEE 
CS Press. 
 
Farrimond, B. and Collins J. Dimensional Inference Using 
Symbol Lives, 2007 International Conference on Software 
Engineering Theory and Practice (SETP07), Orlando, 
Florida  
 
Mercury Computer Systems Inc. , 2008. "Innovation for 
Next-Generation Warfare." Available at: 
http://www.mc.com/uploadedFiles/Innovation-for-Next-
Generation-Warfare.pdf . 
 
Nallatech 2008 home web page:  http://www.nallatech.com/ 
 
Overbey J., Xanthos S., Johnson R., Foote B., 2005. 
"Refactorings for Fortran and high-performance computing" 
Proceedings Of The Second International Workshop On 
Software Engineering For High Performance Computing 
System Applications p. 37-39, ACM 
 
Trimberger S.M., 1994, ed, "Field-Programmable Gate 
Array Technology". Springer 
 
Underwood K.D. 2004 "FPGAs vs. CPUs: trends in peak 
floating-point performance". Proceedings of the 
ACM/SIGDA 12th International Symposium on Field 
Programmable Gate Arrays, FPGA 2004: 171-180 
 
Wain R. et al., 2006, "An overview of FPGAs and FPGA 
programming; Initial experiences at Daresbury", Tech. rep., 

http://www.nallatech.com/


Computational Science and Engineering Department, 
CCLRC Daresbury Laboratory, November 2006. 
 
WinFPT 2008 home web page: http://www.simcon.uk.com  
 
Xilinx Inc, 2008. "FPGA and CPLD Solutions from Xilinx, 
Inc". Available at: http://www.xilinx.com/ 
 
Biographies 
 
Brian Farrimond is Principal Lecturer in Computing at 
Liverpool Hope University, UK. Brian has an MA in 
Physics from Oxford University, MSc in Computer Science 
from University of Manchester UK. He is Honorary 
Research Associate at the University of Cape Town. Besides 
working at Liverpool Hope since 1992, he has worked as a 
consultant on a number of software engineering projects in 
the aerospace industry usually involving Fortran code 
migration. He has made major contributions to the 
development of the SimCon WinFPT toolkit 
(http://www.simcon.uk.com). In addition, Brian has 
developed the ChurchBuilder 3D Modelling tool for school 
children (http://www.kiddycad.com) and time map 
simulations of historical events  
(http://farrimond.no-ip.org/tmrg) 
 
John Collins is technical director of SimCon Ltd. 
(http://www.simcon.uk.com), Associate Lecturer at 
Liverpool Hope University UK and an Honorary Research 
Associate at the University of Cape Town, attached to the 
Centre for High Performance Computing.  He holds an MA 
in Physics and an MSc in Mathematical Psychology from 
Oxford University.  He has worked in compiler design and 
software tool development since 1982, first as Software 
Development Manager at ADI Inc. in Ann Arbor Michigan 
(http://www.adi.com/), and  later as Technical Director of 
SimCon.  He is the principal author of the underlying engine 
which analyses and  re-engineers Fortran code in WinFPT. 
 
Ashutosh Sharma is Project Development Officer for the 
APPRASE project. He has worked on FPGAs for the 
APPRASE project and set up a High Performance 
Computing facility at Liverpool Hope University. He has an 
MSc degree in Distributed Systems from University of 
Liverpool U.K. and Bachelor of Information Technology 
degree (University of Delhi, India). Prior to working at 
Liverpool Hope University, he has worked for Sony 
Computer Entertainment Systems and Government of 
India’s - Center for Development of Telematics. His 
research interests in addition to FPGAs and High 
Performance Computing include GSM mobile systems. 
 

http://www.simcon.uk.com/
http://www.xilinx.com/
http://www.simcon.uk.com/
http://www.kiddycad.com/
http://farrimond.no-ip.org/tmrg
http://www.simcon.uk.com/
http://www.adi.com/



