
Automated Quality Assurance Analysis:

WRF – A Case Study

John Collins and Brian Farrimond
Remote Radar Sensing Group, University of Cape Town, South Africa

Email: john.collins@simconglobal.com

Mark Anderson, Darryl Owens and Darryl Bayliss
Department of Computing, Edge Hill University, UK

Email: {mark.anderson, darryl.owens, darryl.bayliss}@edgehill.ac.uk

David Gill
National Center for Atmospheric Research, Boulder, CO, USA

Email: gill@ucar.edu

Abstract— Powerful software tools are used by the
aerospace and power generation communities to check
codes for errors. The Software Validation Project at Edge
Hill University (http://www.edgehill.ac.uk) in collaboration
with SimCon Ltd (http://www.simconglobal.com) has
applied these tools to WRF, the most widely used program
for modeling climate and weather. Preliminary results have
been generated. Although the WRF code has been found to
be of a very high standard, some errors have been identified,
both in the code and in the compilers used to build it. An
aim of the project is to use CASE tools to correct some
classes of error automatically. This paper discusses the
classes of error that have been identified to date, presents
the initial findings from the investigations performed by the
project team.

Index Terms— Quality Assurance; Automated Software
Engineering; Error Removal

I. INTRODUCTION

The successful validation and verification of climate
models is an essential aspect of studies in and predictions
of climate behaviour. The Weather Research and
Forecasting Model (WRF) [1] developed under the aegis
of the University Corporation for Atmospheric Research
(UCAR) and the Unified Model (UM) [2] developed by
the UK Meteorological Office are two major examples of
such models.

Although the procedures used for quality assurance in
the models are systematic and are well established in the
software engineering world, they are unable to reveal the
existence of many types of error. Furthermore, having
found an error they are often unable quickly to identify
and correct the source or sources of the error. Many
software development tools are available to software
engineers but the majority is targeted at recently
developed languages and methodologies.

In contrast, climate models have been developed over
many years and have stayed loyal to their original
languages - overwhelmingly Fortran and C. WRF and
UM are both sets of Fortran programs. In addition, the
need to provide complex build mechanisms for a range of
platforms, multiprocessor architectures and compilers has
meant that the Fortran source code may not available in a
form that software development tools supporting Fortran
are able to analyse.

The Software Validation Project (SVP) at Edge Hill
University aims to enhance the efforts of development
teams typified by the maintainers of WRF and UM by
applying powerful software tools used by the aerospace
and power generation communities to check codes for
errors. To this end the project team selected WRF for
initial investigation since its source code and build
procedures are publicly available. It then considered how
one particular software development tool for Fortran,
WinFPT, could analyse WRF and report on issues within
the code that had been hidden from the WRF developers.
This paper reports on the techniques used and the issues
revealed.

The aim of this project is to perform a study of WRF,
not in relation to the climatological model but in terms of
quality assurance of the software. The WRF program is
of considerable academic interest because of the modern
Fortran style in which it is written. Major Fortran
programs in aerospace, power generation, medical
research and defence, are almost exclusively written in a
style best described as extended Fortran 77. In contrast,
WRF uses most of the features of (at least) Fortran 2003.
The purpose of the project is to understand the
implications for code quality and the types of error which
occur when a modern Fortran dialect is utilised for a large
scale implementation.

The objectives of the project are:

• to analyse WRF to identify errors;

• to demonstrate the complete absence of certain
classes of error;

• to correct any errors identified, sometimes
automatically;

• to evaluate the effects of the errors and of the
corrections.

II. EXISTING QUALITY ASSURANCE PROCEDURES
There are quality assurance techniques that are

currently used to overcome challenges facing High
Performance Computing (HPC) specifically based in
scientific software development [3][4][5]. One commonly
occurring theme is the use of older programming
languages due to the length of time these programs have
been under development [5]. In this section the quality
control procedures for two major Fortran based scientific
software projects, WRF and UM, are briefly described
and critiqued.

WRF Quality Assurance Procedures
The practices adopted by the WRF development

teams aim to introduce measures for quality assurance
throughout the design and build process. These include
the development of coding standards to adopt within the
model, along with identified use of version control tools
[6].

To support the continual development of WRF,
working groups have produced test suites and test
procedures [7] to test the code. This has been supported
by the formation of the Developmental Testbed Center
(DTC) which has provided on-going support and
incremental testing of WRF for reference configurations
(RC) [8]. Evaluation procedures undertaken on releases
of WRF include

1. Automated tests to capture coding errors which
cause the compilation to fail

2. Manual tests conducted to evaluate the scientific
output from the model for accuracy

3. Real-time tests for stability and integration
checking

4. Pre- and post-processing tests for diagnostic and
graphics systems

5. Architectural tests to evaluate builds on multiple
architectures and/or compilers [9]

However, concerns may be raised regarding the tests
which are performed in relation to the quality assurance
of the code base. The automated tests for regression
testing determine only whether the execution of the code
completes successfully. The output generated by the
code is not considered in this suite of tests. Therefore
there may exist differences in the output of the modules
following compilation and execution which are not
identified following the successful completion of the
automated tests.

Manual testing, on the other hand, is a slow and
laborious process which exercises a much smaller number

of well understood test cases. The impact upon cases
which have not been tested is unknown. Potentially
worse, the cases that are tested may produce results
which appear to be more accurate but the execution paths
that generate those results may be totally unexpected and
lead to significant impact in other cases which have not
been tested, or in future tests. The automated and manual
tests are not guaranteed to uncover issues related to
numerical drift. Also they would not uncover errors
which were introduced in the compilation process related,
not to the code base itself, but to the compilers used to
build the model. WRF is designed not to be tightly
coupled to machine architecture or compiler. Thus there
exists an opportunity for different compilers to generate
executables which produce dissimilar output from the
model, a situation which is acknowledged by the DTC
[8]. In both cases, automated relative debugging
techniques would assist in identifying changes in between
the outputs of different builds, and therefore the
underlying causes may be resolved [10], Automated
debugging processes described in this paper would enable
the output from large number of test cases can be
evaluated at multiple points within the execution of the
test cases without significant intervention from the user.

UM Quality Assurance Procedures
The United Kingdom Meteorological Office (Met

Office) has developed a long term strategy in order to
address the challenges surrounding quality assurance of
the code base. One major challenge faced is ‘the
prediction challenge’; computational science does not
have the predictive reliability of traditional
methodologies [11]. To meet this challenge, the Met
Office developed an approach of Flexible Configuration
Management (FCM) to manage its Unified Model (UM)
[12]. FCM is combined with a rigorous structure and
processes that dictate the rest of the quality assurance
procedures [13].

One such procedure which has been adopted within
the QA strategy has been the comparison of visualisations
of model output between implementations and executions
of the model [13]. The underlying notion is that any
differences between the visualization will indicate that an
error has been introduced as revisions and updates have
been applied to the model. However, whilst this may
reveal differences between the executions of the different
versions of the model, it is unlikely to reveal errors
common to both versions. This is the same situation as
arises in manual testing of the WRF model. Correct
identification and interpretation of the visual differences
and familiarity with the code are needed to remove the
errors causing the differences. There is also the
possibility that smaller, seemingly insignificant, errors at
this stage in development could pass this stage of QA and
cause problems in future developments.

Two further procedures are undertaken as part of the
QA process which also fail to reveal errors that have been
introduced into the model. These are the automatic
checking for bit comparison between outputs of different
runs, and the formal comparison of results from other

model implementations [13]. Neither would support the
identification of numerical drift caused, for example, by a
compiler choosing to keep different variables in registers
because of changes to the code. While these comparisons
can, in most cases, establish differences in
implementations of models, both of these processes
makes it difficult to track back from the differences
identified to the source, or sources, of those differences.

III. THE CASE TOOL
In this project, WRF is analysed and re-engineered by

a computer aided software engineering (CASE) tool. The
tool used is WinFPT (http://www.simconglobal.com).
WinFPT:

• reads the entire program like a compiler;
• analyses the program and data flow across all

modules and sub-programs;
• identifies many classes of error and

inconsistency;
• optionally re-engineers and re-writes the code to

measure behaviour at run-time;
• optionally re-engineers and re-writes the code to

correct some classes of error.

WinFPT carries out static analysis of the code. It can

also instrument the code for some classes of dynamic
analysis. For example, counters can be inserted for test
coverage analysis to measure the number of times each
statement is executed. Also code execution and the
values of variables can be traced for relative debugging,
exposing differences in the behaviours of different
compilers.

IV. ANALYSING WRF
The WRF program is distributed as pre-processor

source files, with the file name extensions .”F” and
.”F90” (Upper case “F”). The build procedure generates
code for specific parallel environments and compilers,
and converts these files to standard Fortran files with the
extension “.f90”. The pre-processing is carried out by a
special purpose C program, standard.c, and by the C
language pre-processor, cpp. The textual changes made
in pre-processing are extensive. The first pre-processing
step strips all of the comments from the code, and cpp
collapses white space characters between the tokens.

WinFPT cannot analyse or re-engineer the pre-
processor source code. The analysis is carried out on the
intermediate, compilable, “.f90” Fortran files. This does
not affect the error detection, but it creates two
difficulties if the re-engineered code is to be built and
run. Firstly, the entire build procedure has to be re-
written to start with Fortran files instead of pre-processor
code. Secondly, any automatic corrections made by
WinFPT are made on files from which the comments
have already been stripped. The corrected code cannot,
therefore, be reintroduced into the WRF distribution.

WRF Program Metrics
The code analysed contained 624,555 lines of Fortran

which, as stated earlier, have been developed using a

modern dialect of Fortran. Table 1, below, shows a
comparison between WRF and a typical aerospace
engineering code. “Radar” is the signal processing and
instrument control of a tracking radar system.

The most important difference between the style of
WRF and of the Radar code is in the use of Fortran
modules. A third of the sub-programs, and all of the
shared data in WRF, reside in modules. In the Radar
code most of the sub-programs are written in separate
files linked at the top level, and the shared data are in
COMMON blocks written in include files. The
disadvantage for the Radar code is that the fragmentary
organisation of sub-programs and the need to control
memory allocation in COMMON blocks provides
significant scope for error. The advantage is that any
routine can be changed, and the Radar program can be re-
linked in 20 seconds. The corresponding time to change
a routine in WRF is typically 20 minutes.

The most important difference between the style of
WRF and of the Radar code is in the use of Fortran
modules. A third of the sub-programs, and all of the
shared data in WRF, reside in modules. In the Radar
code most of the sub-programs are written in separate
files linked at the top level, and the shared data are in
COMMON blocks written in include files. The
disadvantage for the Radar code is that the fragmentary
organisation of sub-programs and the need to control
memory allocation in COMMON blocks provides
significant scope for error. The advantage is that any
routine can be changed, and the Radar program can be re-
linked in 20 seconds. The corresponding time to change
a routine in WRF is typically 20 minutes.

The count of comments in WRF is distorted by the
pre-processor standard.c, which strips the text of the
comments and leaves blank lines. The count of include
files is also distorted by the use of the c pre-processor
#include directive. The analysis was carried out on code
which was already pre-processed and the include files
were therefore already inserted inline.

V. ERRORS IN WRF
The static analyses performed on WRF include checks

for:
• inconsistent sub-program arguments;
• errors in addressing within COMMON blocks

and EQUIVALENCE structures;
• objects forced to mis-aligned addresses;
• accidental loss of precision in expressions;
• variables read before they are initialised;
• unintended whole array assignments;
• failures in overloaded assignments of derived

types;
• unreachable code sections

The results are described in the following sections.

Inconsistent Sub-program Arguments
A check is made that all actual sub-program

arguments are consistent with the formal arguments in the
sub-program declarations in:

Table 1. Comparison of WRF with a typical Aerospace Engineering Code

 WRFV3.4 Radar
Files
 Primary files 392 1589
 Include files 3 1891

Code and comments
 Declaration lines 139724 49831
 Executable lines 331732 100203
 Total code lines 471456 150034

 Comment text lines 72984 236033
 Comment separator lines 19084 7942
 Blank lines 61031 87402
 Total comment lines 153099 331377

 Total lines 624555 481411

 Trailing comments 33014 27907
 Words in comments 577601 662221

Program units
 Programs 4 38
 Block Data 0 11
 Modules 216 0
 COMMON Blocks 1 110
 Subroutines 2764 2021
 Functions 29 21
 Module subroutines 1267 0
 Module Functions 198 0
 Internal subroutines 30 233
 Internal Functions 2 1
 Additional entries 0 0
 Generic interfaces 56 0
 Specific interfaces 93 0
 Unresolved references (C/Assembler) 250 103

• data type;
• data kind (e.g. 4-byte or 8-byte REAL numbers);
• protocol (e.g. passed by reference, by value or by

address and length);
• intent (i.e. whether input, output or both input and

output);
• array bounds. Note that these should conform but

need not be identical since sub-arrays may be
passed.

A simple analysis shows 2353 occurrences of

inconsistent arguments, affecting 375 different sub-
programs in the Fortran code in WRF version 3.4.
However, 1002 of these are situations where the shapes
of arrays are re-mapped across the subroutine call-site.
Several hundred more are data type inconsistencies where
the data passed are simply moved to other processors or
threads and the data type is not important. 449
inconsistencies are situations where the formal and actual
arguments are of type CHARACTER, both have
specified lengths and the lengths are different. This
works without error on most, but not all, compilers.

Detailed analysis of the analysis shows surprisingly
few situations where the inconsistency is likely to cause a
problem. The difficulty is that there are so many
harmless inconsistencies that it is difficult to find the
genuine errors. The example shown above is unusual.

Errors in the intent of arguments are of two types.
Sometimes a constant or an expression is passed as an
argument into a sub-program and may be written to. An
example is shown in Figure 1. Here, the actual argument
is a Fortran parameter (a constant) but the formal
argument, “fieldtype”, can be written to. Errors like this
are unlikely to be serious. If the called routine attempts
to write to the constant the program will probably crash.
If the program does not crash, the write probably never
takes place. This is unlikely to produce incorrect results.
The second class of intent error, where the intent of the
formal argument is declared incorrectly, is far more
serious and is discussed below.

Errors in Intent Declarations
In Fortran, a sub-program argument may be declared

to be INTENT (IN), INTENT (OUT) or INTENT
(INOUT). These declarations are almost always optional.
In making an intent declaration, the programmer asserts
that an argument:

• is read by the sub-program, but never written:
INTENT (IN);
• is written to in the sub-program but not read
before it is written: INTENT (OUT);
• may be read before it is written and may be
written to: INTENT (INOUT).

If an argument is declared INTENT(IN) the compiler

need not (and perhaps should not) export the value of the
argument when control returns from the sub-program. If
an argument is declared INTENT(OUT) the compiler
need not import the value of the argument into the sub-
program when it is called.

Compilers compile sub-programs one at a time. Most
compilers recognise simple intent errors if the intent
assertion is violated directly in the sub-program code.
They do not recognise an error if the argument is passed
down into another sub-program which violates the
assertion. The analysis tools track the intent and read-
write status of every argument through the entire call-
tree. There are three possible problems:

• the argument is declared INTENT (IN) and can
be written to. This is always an error. There are
142 occurrences in WRF version 3.4
• the argument is declared INTENT (OUT) and is
always read before it is written to. This is also
always an error. There are 62 occurrences in WRF
version 3.4.
• the argument is declared INTENT (OUT) and it
is possible that it is read before it is written to. The
issue here is that the program flow may be data
dependent and unclear. There is a risk of error.
There are 1,322 occurrences in WRF.

It is possible to correct all intent errors automatically.

For example, if an INTENT (IN) argument is written to,
the argument can be copied to a temporary variable on
entry to the routine and the temporary used instead. The
problem is in deciding what the programmer intended to
happen. Should the correction honour the INTENT (IN)
declaration, or should the INTENT declaration be
changed to reflect the behaviour of the code? There is a
strong probability that compilers always ignore intent
declarations when compiling the data passing protocol of
an argument, and the authors have verified this for two
important compilers. The authors plan to correct the code
by honouring the INTENT (IN) declarations and to test
WRF to determine whether there is any change in
behaviour.

Anomalies in Expressions
WRF version 3.4 contains 4,722 anomalies in

arithmetic or character expressions. Most of these
involve:

• loss of precision;
• testing of equality of REAL numbers
• truncation of character strings.

In WRF there are 235 occurences of loss of precision
where exponents are single precision rather than double
precision. There are also 940 occurrences of 8-byte
REAL variables being assigned from 4-byte real values
which results in 4-byte precision. It is common practice
to compute a derivative to 4-byte precision and to
integrate the result to 8-byte precision.

Switches are available in the WRF build procedure to
promote all REAL objects to REAL*8. These may
overcome the problem, but it is not clear that these
switches change both the storage allocation and the
numerical values stored on all systems.

There are 675 occurrences where real or complex
values are tested for exact equality, as in the example in
Figure 4 below. If this is to avoid a division by zero, it is
likely that a tolerance should be introduced into the test.
Again, all of these anomalies can be corrected
automatically.

Variables which are read before they are initialized
Static analysis shows 322 variables which are read in

the code before any values are written to them. This may
be an underestimate because the analysis only shows
situations where the program flow is unambiguous.
However, in many cases the variables are reported as read
because they are passed into sub-programs, and it is not
certain that the sub-programs actually read them.
Dynamic analysis, where the WRF program is run under
different compilers, has revealed differences in behaviour
caused by uninitialised variables, and a study is planned
to investigate this rigorously.

Failures in Overloaded Assignments of Derived Types
Fortran supports the assignment of variables of

derived types. If A and B are both of the same derived
type, the statement “A = B” copies all of the components
of B to A.

Fortran also allows the assignment of derived types to
be overloaded. A subroutine is written to carry out a
modified copy operation. The subroutine is declared to
overload the assignment operator by an “INTERFACE
ASSIGNMENT (=)” construct.

A problem with this language construct is that if any
error is made in the scope or declaration of the
“INTERFACEASSIGNMENT (=)” the overload fails and
the variables of the derived type are simply copied
silently and without any apparent error.

There is only one INTERFACE ASSIGNMENT (=)
construct in WRF. It occurs in ESMF_time.F90. This is
the only INTERFACE ASSIGNMENT (=) construct
which the authors have encountered in the analysis of
several tens of millions of lines of Fortran. The module

in which it is written has a global PRIVATE statement,
and the interface is not declared to be public. It is
therefore not exported from the module and the
overloaded assignment sometimes fails. The situation is
made worse by a bug in the Intel compiler which causes
the interface to be exported when the subroutine used to
make the copy is exported. Therefore, WRF works as
intended when compiled by the Intel compiler and as
written when compiled by the gnu (and probably every
other) compiler.

The authors suggest that a construct which is used
only once in many millions of lines of code, and which
has a 100% failure record, should probably be avoided.

Unreachable Code
There are 552 unreachable sections of code in the

version of WRF which was analysed. Most of these may
be deliberate. The analysis tools can only be used on the
intermediate Fortran files produced during the build
procedure, and these files are pre-processed for a specific
architecture. Some of the pre-processing inserts jumps
around sections of the code.

The number of unreachable sections is sufficiently
small that a manual analysis can be carried out, and this
will be done in the future.

Errors which do not occur in WRF
Certain classes of error do not occur in WRF. The

analyses carried out show:
• Errors in COMMON blocks: Programs written
in an extended Fortran 77 style usually contain
COMMON blocks, sometimes with many thousands of
variables. Errors in the organisation of COMMON
blocks are common. WRF has one COMMON block
which contains only 6 scalar variables. There are no
errors in COMMON blocks in WRF.
• Mis-aligned Addresses: In extended Fortran 77
code, COMMON blocks, EQUIVALENCE statements,
sequence derived type and structure constructs sometimes
force variables to mis-aligned addresses where, for
example, a REAL*4 object does not start on an address
which is a multiple of 4. This causes inefficiency, and
occasionally compiler errors. WRF contains only 77
EQUIVALENCE statements and only one COMMON
block. The code contains no mis-aligned objects.
• Unintended Whole Array assignments: Fortran
allows assignments of the form “A = x” where A is an
array and x is a scalar variable. All elements of A receive
the value of x. This is dangerous. The authors have
encountered many examples of the form:
 DO i=1,10
 A = B(i)
 ENDDO
where the programmer intended to write:
 DO i=1,10
 A(i) = B(i)
 ENDDO
There are no errors of this type in WRF.

VI. COMPARISON OF THE ERRORS IN WRF WITH A
TYPICAL AEROSPACE CODE

It is a reasonable assumption that the modern style of

WRF should have protected the code from many classes
of error. A comparison with the Radar code is shown in
Table 2 below. WRF is larger than the Radar code and
the error counts are therefore shown in the right-hand
columns of the table as the number of anomalies per
thousand code lines.

In WRF, there are 150 occurrences of constants or
expressions which are passed to routines which could
write to them. The radar code has only 2. The difference
is probably a consequence of the very large number of
sub-program arguments used in WRF. As noted above, it
is unlikely that WRF actually writes to these arguments.

WRF has 142 INTENT (IN) errors and 62 confirmed
INTENT (OUT) errors. The Radar code has none
because it contains no INTENT statements. It is not clear
that the use of INTENT statements has contributed to the
quality of the WRF code.

The Radar code contains hard-coded array references
out of bounds. WRF does not. Some of the out of
bounds references in the Radar code are deliberate, and
make use of the tightly controlled memory mapping of
the COMMON blocks. Some are accidental, but, because
of the use of COMMON blocks, at least they are
consistent errors.

The remaining anomalies, uninitialised variables,
inconsistent arguments and anomalies in expressions
show a similar pattern in the two codes. This is
surprising because the WRF code is far more readable
than the Radar code and the use of modules provides for
better checking of interfaces and better control of scope.

VII. CORRECTING AND TESTING THE CODE
A small number of the anomalies detected can safely

be corrected by hand. The correction of the failed
overloaded assignment, for example, is a one line change.
In most cases, the correction must be automated. It is not
practical to correct 4722 anomalies in expressions
manually, and the risk of injecting new errors would be
significant.

Currently, the CASE tools can correct a proportion of
the expression anomalies and all of the INTENT (IN)
errors. They must be extended to handle the remaining
expression anomalies and the INTENT (OUT) errors.
Very few of the mis-matched sub-program arguments
actually require correction. It is hoped that those which
do can be identified and corrected by hand,

A necessary first step in making the corrections is to
modify the build procedure so as to rebuild from
compilable Fortran sources. The intention is to
encapsulate the changes made by the pre-processors so
that the majority of files do not require pre-processing.
This would make it possible to re-engineer the code once
before a series of builds instead of re-engineering it for
every separate build as part of the build process.

Testing of the changes requires the development of a
regression test suite. A coverage analysis of the WRF

Ideal cases showed that they visited only 18% of the
executable Fortran statements. Test material is now
available which exercises over 50% of the code and this
will be extended.

The problem in testing is in comparing the results
from different runs. Almost any change in the code is
likely to inject numerical drift, where small changes are
cumulated so that the results of two runs show large
numbers of differences. A procedure has been developed
to eliminate numerical drift in single processor runs, and
it is hoped to extend this procedure for multi-processor
runs.

VIII. FURTHER ERROR CHECKS
Two further error checks have been identified for

further investigation as they could affect the stability and
reproducibility of WRF runs. They are:

• a check for the use of optional arguments to sub-
programs. The issue is that optional arguments could be
passed down to routines without a check that they are
present. If this occurs, the value passed might be that
from an earlier call to the routine, or might be null. A
null argument could crash the program;

• a check for race conditions in multi-processor and
multi-threaded runs.

IX. CONCLUSIONS
Initial investigation making use of the techniques

described has enabled a number of issues to be
discovered. These issues can be related to coding in the
model and the compilers used to build the code. The
paper discusses three findings from the experiments that
have been performed. These represent important
validation of this technique, and the intention of the
project is to apply the technique to include broader
coverage of the WRF model code

The WRF version 3.4 program contains a little over
10,000 known coding anomalies. There are 624,555 code
lines. Therefore there is approximately 1 anomaly per 60
lines (or about 2% of the codebase). These are anomalies
in the code, not in the underlying climatological model.

A large proportion of the anomalies can be corrected
automatically and work is under way to complete this
task. A necessary first step is a revision of the build
procedure. A test suite and test analysis tools are under
development to assess the implications of the anomalies
identified and to test WRF before any permanent changes
are made.

The anomalies found were mostly invisible to the
existing techniques or could only be revealed by
considerable effort and knowledge of the source code. In
contrast, the techniques described in this paper revealed
the anomalies quickly and in the majority of cases were
easily remedied. Where the reasons for anomalies were
not obvious such as the failures in overloaded
assignments of derived types, analysis of the divergence
of control paths followed by the instrumented models
revealed bugs in the program, compiler and the Fortran
language itself which would have been virtually
impossible to detect otherwise.

ACKNOWLEDGMENT

The authors wish to thank Prof. W. J Gutowski jr.
Iowa State University and Prof. Bruce Hewitson,
University of Cape Town for their help and support.

REFERENCES

[1] J. Michalakes, Dudhia, J., Gill, D., Henderson, T., Klemp,
J., Skamarock, W., and Wang, W.: The Weather Research
and Forecast Model: Software Architecture and
Performance. Proceedings of the Eleventh ECMWF
Workshop on the Use of High Performance Computing in
Meteorology. Eds. Walter Zwieflhofer and George
Mozdzynski. World Scientific, pp 156 – 168, (2005)

[2] M.J.P. Cullen, “The unified forecast/climate model”.
Meteorological Magazine (UK), Vol. 122, No. 1499, pp
81-94, (1993)

[3] D. Abramson, Foster, I., Michalakes, J. and Sosic, R.
Relative debugging and its application to the development
of large numerical models. In Proceedings of the 1995
ACM/IEEE conference on Supercomputing, ACM, New
York, Article 51.(1995)

[4] D. Abramson, Foster, I., Michalakes, J. and Sosic R.,
“Relative Debugging: A New Methodology for Debugging
Scientific Applications”, Communications of the
Association for Computing Machinery (CACM), Vol 39,
No 11, pp 67 - 77, Nov (1996).

[5] D. Abramson and Sosic, R. A debugging and testing tool
for supporting software evolution. Automated Software
Engineering: An International Journal, 3(3/4):369–390,
August (1996).

[6] J. Michalakes, Middlecoff, J., Black, T., Xue, M.,
Sedlacek, D., Benslay, J., Holt, T. and Balaji, V. ‘Coding
standards and conventions for the physics packages’.
Available online at
http://www.mmm.ucar.edu/wrf/WG2/WRF_conventions.ht
ml [accessed 14/09/12]

[7] C. Davis, Mahoney, J., Lin, Y., Carr, F., Craig, B.,
Swenson, M., Lerner, J. and Trier, S.’WRF Testing Plan’.
Available online at http://wrf-
model.org/development/group/WG7/Pre-
reference_testing3.doc [Accessed 14/09/12]

[8] “Developmental Testbed Center Home”.
http://www.dtcenter.org/ [Accessed 15/09/12]

[9] “WRF Model Version 3.1: Testing”.
http://www.mmm.ucar.edu/wrf/users/wrfv3.1/testing.html
[Accessed 15/09/12]

[10] D. Abramson, Foster, I., Michalakes, J. and Sosic R.,
“Relative Debugging: A New Methodology for Debugging
Scientific Applications”, Communications of the
Association for Computing Machinery (CACM), Vol 39,
No 11, pp 67 - 77, Nov (1996).

[11] D. Post, “The Coming Crisis in Computational Sci- ence,”
keynote, IEEE Int’l Conf. High-Performance Computer
Architecture: Workshop on Productivity and Performance
in High-End Computing, 2004;
www.tgc.com/hpcwire/hpcwireWWW/04/0319/
107234.html.

[12] D. Matthews, Wilson, G.V. and Easterbrook, S.M.,
“Configuration Management for Large-Scale Scientific
Computing at the UK Met Office,” Computing in Science
& Eng., vol. 10, no. 6, 2008, pp. 56–65.

[13] S.M. Easterbrook, Johns T.C., Engineering the Software
for Understanding Climate Change, Computing In Science
and Engineering, Nov (2009)

