
Automatic Detection of Software Errors in WRF
John Collins1,2,* Brian Farrimond2,3 Mark Anderson3

 1. SimCon Ltd UK 2. University of Cape Town, 3. Edge Hill University UK, * john.collins@simconglobal.com

Introduction
WRF is probably the most important computer program ever
written. It is also a triumph of software engineering. However it
is unlikely that a program of this size would not contain coding
errors, and even if it did not, there are errors in the compilers with
which it is built.

Software tools are used in the aerospace and other engineering
industries to analyse programs for errors. The authors have
adapted one tool, WinFPT (http://www.simconglobal.com) for
the analysis of WRF.

How are errors detected

Preparing WRF for Analysis and Instrumentation

WRF source code is not distributed as directly compilable code.
It is pre-processed before compilation to adapt to the specific
compiler and multi-processor configuration. The analysis tools
cannot analyse the pre-processor code.

The WRF build procedure was therefore modified to capture the
intermediate Fortran files. These were moved to a parallel
directory structure for analysis. The build procedure was further
modified to build instrumented versions of the WRF code.

Measuring WRF Program Size
The measurement of a program such as WRF is most meaningful
when compared with other programs of comparable size. The
analysis tools used were designed for use in the aerospace and
engineering industries, and WRF was compared with a typical
program from that environment. “Radar” is the signal processing
of a tracking radar control system. WRF is very different !

Program Size
 WRFV3 Radar

Files
Primary files 348 1,589
Include files 3 1,891

Code and comments

Declaration lines 100,234 49,831
 Executable lines 235,342 100,203

Total code lines 335,576 150,034

Comment text lines 8,351 236,033
Comment separator lines 406 7,942

 Blank lines 16,077 87,402
Total comment lines 24,834 331,377

Total lines 360,410 481,411

WRF Language
 WRFV3 Radar

 Programs 4 38
 Block Data 0 11
 Modules 216 0
 COMMON Blocks 1 110
 Subroutines 2764 2021
 Functions 29 21
 Module subroutines 1267 0
 Module functions 198 0
 Internal subroutines 30 233
 Internal functions 2 1

The most important differences in program organisation are:

● WRF uses Fortran modules to organise data, the radar code
 uses common blocks in include files;
● WRF uses modules to organise sub-programs. Nearly all sub-
 programs in the radar code are linked at the top level.

This has important implications for the risk of errors in the code.
Compilers check the interfaces of sub-programs within modules,
and the use of modules therefore significantly reduces the risk of
mis-matched arguments. Common blocks must be aligned
correctly in different routines, and there is a significant risk that
misalignments will occur in the radar code. There is, however, a
penalty in using modules in WRF. A routine may be changed in
the radar code and the system may be built and run within 30
seconds. The interdependence of modules in WRF may lead to
build times of the order of 20 minutes when changes are made.

Correcting the Errors

Acknowledgements

The most common potentially serious error in WRF is the
declaration of a sub-program argument to be INTENT (IN) when
the argument is actually modified within the routine. For
example:
File: share/module_io_domain.f90
SUBROUTINE input_boundary(fid,grid,config_flags,ierr)
 IMPLICIT NONE
 TYPE (domain) :: grid
 TYPE (grid_config_rec_type),INTENT(IN) :: config_flags
!--^----
!!! FPT - 2491 INTENT declared IN but argument is written to:
!---
 INTEGER,INTENT(IN) :: fid
 INTEGER,INTENT(INOUT) :: ierr
 IF (config_flags%io_form_boundary .GT. 0) THEN
 CALL input_wrf(fid,grid,config_flags, &
 boundary_only,ierr)
 ENDIF
 RETURN
END SUBROUTINE input_boundary

The variable config_flags is then modified in input_wrf:
File: share/input_wrf.f90
SUBROUTINE input_wrf(fid,grid,config_flags,switch,ierr)

 :
 TYPE (grid_config_rec_type),INTENT(INOUT) :: config_flags

 :
 IF (IERR .NE. 0) THEN
 IF (MMINLU=='UMD') THEN
 config_flags%iswater = 14
 ELSE
 config_flags%iswater = 16
 ENDIF
 ENDIF

The problem is that the compiler may use the INTENT statement
to optimise the code, and may do so incorrectly.

The next step in this study is to correct the errors, and to re-run
test cases to determine whether there has been any significant
impact on the results. Some of these errors, for example, those
in the intent of sub-program arguments, can be corrected
automatically by the tools.

Programming errors are detected by:
● Static analysis of the source code
● Dynamic analysis of the running program

Static Analysis
The software tool, WinFPT, reads the source code in the same
way as a compiler. It carries out detailed static semantic analysis
- identifying the operators and variables and all of their attributes.
 It differs from a compiler in that:
● It analyses all of the modules and sub-programs together,
 correlating information between them.
● It has specific analyses for classes of error and inconsistency
 which may be correct Fortran but which may indicate that an
 error has occurred.

The static analyses check, for example:
● Arguments - Do the actual arguments passed to sub
 -programs match the formal arguments in the sub-program
 declarations?
● Names - Do objects with the same names in different routines
 have the same attributes? For example, is there a Fortran
 parameter named g with different values in different routines?
● Expressions - Is there a loss of precision where single
 precision variables and constants are mixed with double
 precision variables?
● Usage - Are variables used before they are initialised?
 Are values computed but never used?
● Intent - Are sub-program arguments with intent declared (in)
 actually modified? Are arguments declared intent (out)

 used before they are written to?
All of these issues have been identified in WRF.

Dynamic Analysis
Some classes of error are only detected when the code is
executed. These include:
● Compiler bugs - where the code is correct but built incorrectly
● Dynamic array references out-of-bounds
● Uninitialised variables where the path through the code
 cannot be analysed statically
These errors lead to differences in results under different
compilers and operating systems and under different
multiprocessor configurations.
These all occur in WRF.

OPTIONAL
LOGO HERE

Static analysis also measures the WRF code. The measures
include:
● How big is it - how many lines?
● How complex is it - what is the cyclomatic complexity?
● How well is it commented - how many comments, and how
 many words in comments?
● How meaningful are the variable names? - How long are they?
● How is it constructed? Are data organised in Fortran modules
 or in common blocks; are sub-programs organised in modules
 or are they linked as separate objects?
● How many errors and anomalies are there? Anomalies, such
 as mixed precision arithmetic, are not errors but could degrade
 the accuracy of the models.

Measuring the code Measuring WRF Fortran Language Usage Detecting Errors by Dynamic Analysis

The approach is to "instrument" the code by systematically
inserting statements which monitor or change behaviour. The
instrumented code is then built and run.

Two differences are striking. Firstly, WRF is made up of a
relatively small number of large files, many of which contain large
numbers of declarations and sub-programs. The radar code has
many primary files, each of which contains one, or a small
number of related sub-programs. Secondly, the WRF code has
almost no comments. This measurement is spurious. The
compilation pre-processors strip the comments from the code.

Intent Errors

Dynamic Analysis – Trapping Errors when WRF is Run
Differences in model output are always observed when WRF is
built with different compilers. The issue was analysed by
instrumenting the WRF code to capture the result of every scalar
assignment statement. For example:

DO k = kte,kts,-1
 CALL trace_i4_data('K',k,55210)
 lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr
 CALL trace_r8_data('LAMR',lamr,55211)
 ilamr(k) = 1.0/lamr
 CALL trace_r8_data('ilamr(k)',ilamr(k),55212)
 mvd_r(k) = (3.0+mu_r+0.672)/lamr
 CALL trace_r4_data('mvd_r(k)',mvd_r(k),55213)
 n0_r(k) = nr(k)*org2*lamr**cre(2)
 CALL trace_r8_data('n0_r(k)',n0_r(k),55214)
ENDDO

The statements added by WinFPT are shown in red.

In the first run of WRF, the trace subroutines capture the outputs
of the expressions to file. The outputs are labelled by the string
(the first argument) and by an integer identifier which labels the
statement and allows the analysis to follow the program flow.

When WRF is rebuilt with the second compiler, it would be
possible to capture the data again and to compare the results.
However, small differences in rounding are expected to cause
the results of the runs to drift apart, and comparison of the two
runs is impractical. Instead, the data from the first run are read
during the second, and the results of each expression in the
second run are compared on the fly with the results from the first
run. If there are small differences the results from the second run
are overwritten by those from the first run, and this kills the
numerical drift. If there is a large difference, or if the code follows
a different path, an error is reported.

In WRF, this technique has exposed:

● Uninitialised variables;
● A coding error where an operator overload is not correctly
 exported from a module;

● A compiler bug where module sub-program attributes are
 handled incorrectly.

This work has been supported by:
Edge Hill University (UK)
Liverpool Hope University (UK)
United States Air Force Weather Agency

http://www.simconglobal.com/

	Slide 1

